A Compact Magnetic Bearing System for Axial Flow Blood Pump

نویسندگان

  • Lim Tau Meng
  • Shanbao Cheng
  • Dongsheng Zhang
چکیده

In this paper, a compact magnetic bearing system has been developed for axial flow blood pumps. The system is composed of two radial hybrid magnetic bearings (HMBs) and a brushless permanent magnet DC motor. The impeller of the pump is enclosed in the rotor that is suspended by the two HMBs with five-degree of freedom (DOF) control, among which four radial directions are actively controlled, and one axial direction is passively controlled. PID controllers are used to control the HMBs. A Lorentz-typed DC motor drives the rotor in sensorless mode using STMicroelectronics ST7FMC microcontroller. The magnetic bearing system is compact: the outside diameter of the stator is 40mm and the length of the rotor is 48.72mm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and analysis of a magnetically levitated axial flux BLDC motor for a ventricular assist device (VAD)

This study presents the design of a magnetically levitated (maglev) axial magnetic flux brushless direct current motor (AF-BLDC) for an axial blood flow ventricular assist device (VAD). It has three phases, twelve salient stator poles, and eight rotor magnet poles. It is designed in miniature size. Twin AF-BLDC motors are placed in the VAD symmetrically and rotors are coupled to the pump from t...

متن کامل

Optimization of a Hybrid Magnetic Bearing for a Magnetically Levitated Blood Pump via 3-D FEA.

In order to improve the performance of a magnetically levitated (maglev) axial flow blood pump, three-dimensional (3-D) finite element analysis (FEA) was used to optimize the design of a hybrid magnetic bearing (HMB). Radial, axial, and current stiffness of multiple design variations of the HMB were calculated using a 3-D FEA package and verified by experimental results. As compared with the or...

متن کامل

Mathematical modeling of blood flow in a stenosed artery under MHD effect through porous medium

In this investigation, a mathematical model for studying oscillatory flow of blood in a stenosed artery under the influence of transverse magnetic field through porous medium has been developed. The equations of motion of blood flow are solved analytically. The analytical expressions for axial velocity, volumetric flow rate, pressure gradient, resistance to blood flow and shear stress have been...

متن کامل

Magnetic drive system for a new centrifugal rotary blood pump.

The purpose of this investigation was to design a novel magnetic drive and bearing system for a new centrifugal rotary blood pump (CRBP). The drive system consists of two components: (i) permanent magnets within the impeller of the CRBP; and (ii) the driving electromagnets. Orientation of the magnets varies from axial through to 60 degrees included out-lean (conical configuration). Permanent ma...

متن کامل

Design and transient computational fluid dynamics study of a continuous axial flow ventricular assist device.

A ventricular assist device (VAD), which is a miniaturized axial flow pump from the point of view of mechanism, has been designed and studied in this report. It consists of an inducer, an impeller, and a diffuser. The main design objective of this VAD is to produce an axial pump with a streamlined, idealized, and nonobstructing blood flow path. The magnetic bearings are adapted so that the impe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007